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ABSTRACT

RANS computations around airfoils are presented for flows where transition takes place across a laminar
separation bubble. Transition locations are found employing the eN-method and a linear stability solver that
uses the velocity and temperature profiles from the RANS-solution. Hereby, the known eN-method is applied
for the flows with steady onset conditions, whereas a new temporal scheme for the eN-method is used for
the flow around a plunging airfoil. Obtained numerical results are compared to hotwire-, pressure- and PIV-
measurements of laminar separation bubbles.

1 INTRODUCTION

The aerodynamics of low-speed low-Reynolds-number flows over airfoils and wings has been studied for
decades in experimental and numerical works. However, the research was often of an academic nature since
there were few technical applications. One exception was the design of model airplanes for which a rich
experimental data base grew over the years. Here the pioneering work of F. Schmitz [1] is mentioned, and
much work was later performed by researchers at Stuttgart University, Germany [2], [3]. More recently, M.
Selig and co-workers continued to develop advanced aerodynamic design methodologies for model airplane
airfoils and performed a large amount of measurements [4], [5]. The subject of low-Reynolds number flows
does receive more attention presently as advances in the field of micro system technologies enable the de-
velopment of Micro Aerial Vehicles (MAV) with a broad variety of applications. In this context it is useful
to view the range of existing and future unmanned aerial vehicles by using the Reynolds number as the flow
parameter, see Tab. 1. Dimensional analysis states that the Reynolds number is the governing parameter that
determines lift and drag of a given geometrical shape and a fixed disturbance level of the incoming freestream
flow.

MAV long term MAV medium term Current MAV Small drones Drones
Mass 1g 10g 100g 5kg 50kg
Reynolds number 103 −104 104 −5 ·104 5 ·104 −2 ·105 2 ·105 −5 ·105 5 ·105 −2 ·106

Wing configuration Flapping Fixed, rotary, flapping Fixed, rotary Fixed Fixed

Tab. 1: Range of airfoil Reynolds numbers relative to Micro Air Vehicle weight
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Very small aerial vehicles foreseen in the long term will most likely exhibit a laminar flow. At larger
Reynolds numbers, mixed laminar and turbulent flows occur with transition in between. Moreover, it turns out
that aerodynamic designs for Reynolds numbers in the range between 104 and 106 face a flow phenomenon
called laminar separation bubble (LSB). The LSB is a flow where a laminar separation takes place that is in
most cases caused by an adverse pressure gradient along the smooth aerodynamic surface. Small disturbances
present in the laminar flow are strongly amplified in the shear layer of the separated flow and rapid transition
to turbulence takes place. The turbulence, in turn, creates a large momentum transport normal to the shear
layer so that the flow reattaches to the surface and a closed bubble is formed in the time-averaged mean.

Laminar separation bubbles can have large, adverse aerodynamic effects. Usually, they create additional
drag as they displace the outer inviscid flow. This results in reduced suction over the forward portion of
airfoils and wings and decreases pressure recovery in rear parts, so the additional drag is mostly pressure
drag. The increase of pressure drag depends on the size of the LSB, in particular on its thickness in the
normal-wall direction. A more dramatic effect occurs if the transition process in the separated shear layer
is relatively slow and the adverse pressure gradient is strong. Then turbulent momentum transport is not
sufficient to close the bubble and a large separation occurs that extends right to the trailing edge. This causes
a sudden loss of lift and a strong increase of drag along with significant hysteresis effects of force coefficients
with varying angle of attack. Note that the break up of LSBs may be experienced over a broad range of
Reynolds numbers.

reversed flow

laminar
flow

turbulent
flow

receptivity
exponential
growth nonlinear

interactions

break down
to turbulence

Fig. 1: Instability and transition in a laminar separation bubble, with a sketch of time-averaged streamlines

The principal flow behaviour of a laminar separation bubble is sketched in Fig. 1. External distortions,
for example acoustic waves or free stream turbulence, generate small, harmonic waves within the laminar
boundary layer upstream of the separation. The behaviour of the waves of the laminar boundary layer can be
described by linear stability theory (LST) within a certain spatial region: unstable waves grow exponentially
while travelling downstream. This linear process constitutes the second stage of transition. In the third stage
of transition the distortions become so large that saturation occurs and secondary instabilities can grow on
the distorted boundary layer flow: This behaviour is denoted with nonlinear interactions. Finally, the number
of spatial and temporal modes grows rapidly and the ordered laminar structures break down to turbulence.

Transition in 2D laminar separation bubbles is dominated by the behaviour of the primary 2D disturbances
within the laminar boundary layer (called Tollmien-Schlichting modes), according to the research of Rist,
Würz and Wagner ([6], [7] , [8]). Initial 3D-disturbances are also amplified but numerical and experimental
evidence indicates that they do not govern the transition process and its location.

2 FLOW MODELLING FOR ENGINEERING COMPUTATIONS

Aerodynamic design and analysis tools used for flows with laminar separation bubbles are presently restricted
to 2D steady flows [9] and they are rather not reliable in their predictions of the break-up process of LSBs.
For the future design of MAV´s more general analysis tools are sought, which can be applied to 2D airfoils
as well as 3D flows over more complex configurations. Direct Numerical Simulation (DNS) of the flow
during aerodynamic design cycles is not feasible because of the extreme demands on computational resources
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associated with this approach. This paper therefore presents the current status in modelling and computation
of low-Reynolds number flows with laminar separation bubbles using the Reynolds-averaged Navier-Stokes
equations. This engineering approach is expected to complement the existing approximate methods in the
near future. The main issues using this approach are the modelling of the transition laminar turbulent as well
as accurate turbulence modelling.

2.1 Transition Modelling
2.1.1 Linear Stability Theory

For 2D flows the Linear Stability Theory uses a coordinate system (x,z) that is aligned with the local edge
velocity of the undisturbed laminar mean flow such that x is streamwise and z is wall normal. The baseflow at
a given x position is represented by (U,0), i.e. parallel 2D flow. The perturbation stream function representing
a single Tollmien-Schlichting wave is then assumed to be of the form:

Ψ(x,z, t) = ϕ̂(z)eiα(x−ωt) (1)

The components of the perturbation velocity can then be expressed as:

u′ =
∂Ψ
∂ z

= ϕ̂ ′(z)ei(αx−ωt) + cc , (2)

w′ =
∂Ψ
∂x

= −iαϕ̂(z)ei(αx−ωt) + cc . (3)

Herein, α and ω are in general complex,

α = αr + iαi , (4)

ω = ωr + iωi , (5)

with αr being the wave number (wavelenght λ = 2π/αr), ωr the circular frequency and αi, ωi amplification
rates. It can then be distinguished between a spatial and a temporal theory: In the spatial theorie ω is real,
and amplification rates αi < 0 denote spatial amplified disturbances in flow direction, while in the temporal
theorie α is real and amplifications in time are given for amplification rates ωi > 0 and given positions x.

Using the spatial theory and introducing the perturbation velocities, eq. 2 and 3, into the Navier-Stokes
equations, one can obtain the Orr-Sommerfeld equation for the amplitude ϕ̂:

ϕ̂ ′′′′−2α2ϕ̂ ′′ +α4ϕ̂ = iRe[(αU −ω)(ϕ̂ ′′−α2ϕ̂)−αU ′′ϕ̂] . (6)

Using homogenous boundary conditions for the perturbations at the wall and for large values of y, the
problem of stability is now reduced to an eigenvalue problem of eq. 6, assuming that the mean flow, Reynolds
number and circular frequency ω are given. Then, the solution yields the most unstable complex eigenvalue
α = αr + iαi.

2.1.2 Transition Prediction for Unsteady Flow with the eN-Method

A quite successful method for transition predictions was derived from observations, that the location of the
final transition phase (break down) is in many cases dominated by the behaviour of the primary instabilities
with exponential growth. It has been found that the point where the boundary layer becomes fully turbulent
correlates strongly with a certain amplification factor of the most unstable primary wave that is calculated
from the point of neutral stability up to the location with fully turbulent flow. These findings constitute the
so called eN-method.

The assumptions needed to apply the method to the problem of predicting transition of LSBs include:

• Initial and external disturbances of the laminar boundary layer are small. These are the surface rough-
ness, external turbulence, acoustic disturbances, noise, and probably others.
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• The location of the final transition phase (break down) is governed by the behaviour of primary 2D-
waves (Tollmien-Schlichting waves).

• The laminar boundary layer is thin and grows slowly with x.

The last assumptions may appear questionable, at first sight. However, extensive numerical experience from
numerical stability computations and comparisons with the results of DNS by U. Rist and his co-workers
indicates that the assumption of parallel flow needed for the LST formulated above is valid. That is, the
growth rates of primary instabilities computed by LST compares very well with the rates predicted by well
resolved DNS [10], [11].

In the spatial theory, the overall amplification factor A(x)/A0 of the perturbation amplitude A is built by
an integration of the local amplification rates αi:

A(x)
A0

= e
−

x
∫

x0
αidx

. (7)

This integration is done for a fixed number of values for the circular frequency ω . The so called N-factor is
then obtained by taking the maximum value of the amplitude exponent

N = max



−

x
∫

x0

αi(x,ω)dx



 , (8)

and thus forms an envelope over the investigated modes. This is shown in Fig. 2 for the example of of the
flow over a flat plate.

Fig. 2: Application for flat plate, from D.Arnal [12]

The energy of a wave propagates with the group velocity

vg =
∂ωr

∂α
, (9)

which gives the link between the spatial and temporal amplification rates, known as Gaster transformation:

ωi = −αivg . (10)
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Then, while the energy of a mode is convected downstream to a position x̃ = x + vg∆t, its perturbation
amplitude is amplified by

∆n = ln
A(x̃)
A(x)

=

t+∆t
∫

t

ωi(x)dt (11)

This can be used to calculate amplitude exponents for unsteady flows using a simple temporal integration
scheme. For the new position x̃ and for a single mode at the time t +∆t this yields:

n(x̃) = n(x)+∆n(x) . (12)

The N-Factor is than again obtained by taking the maximum value of the amplitude exponents n of the
single modes.

The transition location is found by assuming a critical N-factor at which transition is completed and
comparing it to the calculated N-Factor distribution. For external flows over airfoils and wings in wind
tunnels the main factor influencing the critical N-factor is the free-stream turbulence level of the test section.
An empirical correlation between the turbulence level Tu and the critical N-factor Ncrit is given by Mack
[13]:

Ncrit = −8.43−2.4ln(Tu) (13)

2.1.3 Approximate Envelope Method for Steady Flow

Exact solutions of the two-dimensional boundary layer equations for laminar flow can be obtained by solving
the Falkner-Skan equation

f ′′′ + f ′′ +βh(1− f ′2) = 0 , (14)

where the non-dimensional streamfunction f (η) depends only on the wall-normal coordinate. The solution
describes the flow past a wedge with the wedge angle equal to πβh and consist of self-similar velocity
profiles. These were studied in detail by D.R. Hartree, therefore the parameter βh is referred to as Hartree-
parameter and the corresponding velocity profiles as Hartree profiles. For every Hartree profile a distinct
shape parameter H can be affiliated.

Each Hartree profile can now be analysed similar to the flat plate as shown in Fig. 2, which is the special
case of the flow past a wedge with an angle of 0° (βh = 0). This yields envelope curves similar to the one
in Fig. 2, in dependence of the shape parameter H. These curves can be approximated by linear functions.
These functions are governed by two parameters, one for the intersection with the abscissa and one for the
gradient. Polynomials may be defined that yield numerical values of these parameters and these polynomials
are meant when referring to “the” envelope. The envelope used for the calculations in the present paper has
been created by Würz [6] using tables calculated by Arnal. In order to apply this envelope for the flow around
an airfoil it is assumed that the velocity profiles of the airfoil boundary layer are similar to the Falkner-Skan
flows with the same shape parameter H. Therefore, they are assumed to exhibit the same stability behaviour.

2.2 Turbulence Modelling

Turbulence modelling for engineering applications is usually based on the Reynolds averaged Navier-Stokes
equations. In this approach the contribution of turbulence to the mean momentum is accounted for by the
divergence of the so-called Reynolds stress tensor, which has to be modelled in terms of mean flow quantities.

Most models rely on the Boussinesq hypothesis, namely that the Reynolds stress tensor is proportional to
the mean (traceless) shear tensor, i. e.

ρRi j = −µt

(

∂Ui

∂x j
+

∂U j

∂xi
−

2
3

∂Uk

∂xk
δi j

)

+
2
3

ρkδi j, (15)
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where Ui are the mean velocity components and k is the kinetic turbulence energy. The proportionality
coefficient µt is the eddy viscosity and must be provided by the respective model.

In algebraic turbulence models, like that of Baldwin and Lomax [14], the eddy viscosity is provided by
some algebraic relation, often based on Prandtl’s mixing length concept.

Improvements are achieved using one or two-equation models. The one-equation model of Spalart-Allmaras
[15] uses a transport equation for a value strongly related to the turbulent viscosity with rather heuristic mo-
delling of turbulence diffusion, production and destruction. However, this model is numerically very robust
and therefore widely used for applications. Two-equation models exploit transport equations for the kinetic
turbulence energy k and some length scale of the turbulent eddies, e. g. ε or ω . A model of this class that is
becoming increasingly popular is the SST model of Menter [16], which reads

∂ (ρk)
∂ t

+
∂

∂x j
(ρkU j) =

∂
∂x j

[

(µ +σkµt)
∂k
∂x j

]

−ρRi j
∂Ui

∂x j
−β ∗ρkω, (16)

∂ (ρω)

∂ t
+

∂
∂x j

(ρωU j) =
∂

∂x j

[

(µ +σω µt)
∂ω
∂x j

]

+σd
ρ
ω

max
(

∂k
∂x j

∂ω
∂x j

;10−20
)

−γ
ρ
µt

ρRi j
∂Ui

∂x j
−βρω2. (17)

This model combines the advantages of k-ε and k-ω models by gradually changing the closure coefficients
β , β ∗, γ , σd , σk and σω via a blending function F1. Additionally the model has been sensitized to predict
separation more reliably by defining the eddy viscosity as

µt =
a1ρk

max(a1ω;F2Ω)
, (18)

where Ω is the absolute value of the vorticity and F2 is a function depending on the wall distance. Neverthe-
less all these models suffer from the weaknesses of the Boussinesq assumption (15).

This drawback is overcome by solving the transport equations for the individual Reynolds stress com-
ponents Ri j, which read

∂ (ρRi j)

∂ t
+

∂
∂xk

(ρRi jUk) = ρPi j +ρDi j −ρεi j +ρΠi j. (19)

In contrast to two-equation models, in this approach the production term ρPi j =−ρRik
∂U j
∂xk

−ρR jk
∂Ui
∂xk

is exact,
while the diffusion term ρDi j, the destruction term ρεi j and, in addition, the redistribution term ρΠi j need

to be modelled. In this context simple gradient diffusion is assumed, i. e. ρDi j = ∂
∂xk

[

(µ +Csρk2/ε)
∂Ri j
∂xk

]

,

while for the destruction term it is common practice to assume isotropy, i. e. εi j =
2
3 εδi j. Like in two-equation

models, ε (or ω) must be provided by an additional length scale equation.
A redisribution model that performs very well in homogenous turbulence is the SSG model [17], reading

Πi j = −

(

C(0)
1 ε +

1
2

C(1)
1 Pkk

)

bi j +C2ε
(

bikkk j −
1
3

bmnbmnδi j

)

+
(

C3 −C∗
3

√

bmnbmn

)

kSi j

+C4k
(

bikS jk +b jkSik −
2
3

bmnSmnδi j

)

−C5k
(

bikWk j −Wikbk j
)

(20)

In this equation bi j = Ri j/2k− δi j/3 is called the anisotropy tensor, and Si j and Wi j represent the shear and
the rotation tensors, respectively. For the wall bounded flows investigated here the model has been combined
with the somewhat simpler stress-ω model of Wilcox [18] near walls by gradually changing the coefficients
Ci via the blending function F1 of the SST model [19]. Equation (17) is used for providing the length scale.
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3 NUMERICAL METHODS

3.1 Navier Stokes Code FLOWer

The Navier-Stokes solver FLOWer [20] uses a block-structured computational domain around the aerody-
namic configuration. The flow equations are discretised based on the finite-volume approach, either with
the cell-vertex or the cell-centred formulations. Various options are implemented for treating the convective
fluxes. These are central schemes with scalar or matrix valued dissipation and upwind schemes as well. Inte-
gration in time is performed by explicit multistage schemes. Implicit residual averaging, multigrid and local
time steps improve convergence for steady-state flow computation. Time-accurate computations are suppor-
ted by using the dual time stepping approach. Both convergence and accuracy of low-speed flow simulations
are enhanced by preconditioning. The code is optimised for vector computers. Parallel computations are ba-
sed on MPI and the use of a high-level communication library. A variety of turbulence models is implemented
into FLOWer. These include algebraic eddy-viscosity models, one- and two equation models, algebraic stress
models and Reynolds stress models. Among these the one-equation model of Spalart-Allmaras and the k−ω
model of Wilcox are standard options, but their variants SST, LEA, EARSM have shown improved results
for specific applications, particularly with turbulent flow separations.

3.2 Linear Stability Equations Solver Coast3

The numerical method used for determining local amplification of disturbances is more general compared to
the stability theory based on the Orr-Sommerfeld equation as presented in chapter 2.1. Coast3 treats laminar,
compressible boundary layers [21]. The boundary layer is assumed to be a parallel flow. The harmonic wave
ansatz is applied to the variables u,v,w, p,T . It results in a system of five linear differential equations with an
option to include curvature effects. Coast3 solves the eigenvalue problem for the complex eigenvalue ω , whe-
re the wave numbers α and β (for 3D-Cases) are prescribed by the user. Hence the temporal stability problem
is solved. The system of differential equations is discretised with symmetrical second-order differences. This
yields a 5n-dimensional complex band matrix where n is the number of grid points in wall-normal direction.
The numerical eigenvalue computation is accomplished with a generalised inverse Rayleigh iteration [22]
that takes into account the banded structure of the algebraic problem. The code provides efficient searching
strategies that can be used to find the range of unstable modes for a given flow problem. A data base method
to find the range of amplified spanwise wave numbers is offered as well. Also an option for boundary layer
computations for a given pressure distribution is available.

4 IMPLEMENTATION ISSUES

4.1 Extraction of Boundary Layer Parameters

In order to calculate N-factor distributions with the approximate envelope method as well as the linear stabi-
lity solver, several integral boundary layer parameters have to be extracted from the Navier-Stokes solution.
Therefore, the boundary layer edge has to be detected first. As the pressure can be assumed to be constant
normal to the boundary layer, the boundary layer edge velocity Ue can be calculated from the wall pressure,
pw, using the compressible Bernoulli equation:

Ue =

√

√

√

√U2
∞ −

2κ
κ −1

p∞

ρ∞

[

(

pw

p∞

) κ−1
κ

−1

]

. (21)

Then, the boundary layer thickness δ is found at the point in wall-normal direction where a specified fraction
U = c ·Ue of the edge velocity is reached, with c = 0.99 as a typical value. If U is not reached, then the
point with the maximum velocity is taken instead. These criterions do not perform well close to the leading
stagnation point. Therefore, all points with a surface pressure coefficient cp of more than 95 percent of
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the stagnation value are excluded. This can be safely done because disturbances are damped in this region
anyway.

As the wall boundary layer has, in contrast to the parallel flow assumption of the boundary layer theory, a
small velocity component v normal to the wall, the absolute velocity is used for Ue here,

Ue =
√

u2 + v2, (22)

while the wall tangential velocity component is used for U to calculate the boundary layer parameters:

U = Utan. (23)

The displacement thickness δ ∗ and the momentum loss thickness θ can be determined by integration from
the wall to the boundary layer edge:

δ ∗ =

δ
∫

0

(

1−
U
Ue

)

dy ; θ =

δ
∫

0

U
Ue

(

1−
U
Ue

)

dy (24)

Using the above values for δ ∗ and θ , the shape parameter and the Reynolds number based on θ , the velocity
Ue and the viscosity νe at the boundary layer edge can be determined:

H =
δ ∗

θ
, Reθ =

Ueθ
νe

. (25)

4.2 Treatment of Stability Data Close to the Numerical Transition Location

The numerical update of the transition location requires special attention: Switching on the source terms of
the turbulence model at the predicted transition location will numerically affect the laminar, boundary layer
just upstream of that point, by the inherent discretisation errors of the numerical scheme. This numerical error
can have adverse effects on the further transition prediction result if no adequate treatment is introduced into
the transition location update. In our experience, for the LST-solver as well as the approximative envelope
methods, this is mainly an issue in attached flows. Also, separated flows are effected if turbulence models are
used which react abruptly to their activation, like algebraic turbulence models. We have therefore developed
a new method for extracting reliable transition location estimates from stability results based on RANS
mean flow data. The method is based on streamwise linear extrapolation of N-factors from flow regions with
reliable laminar mean flow into the transitional or even turbulent locations. The method searches for non-
physical gradients of the N-factor or local maxima that are caused by the numerical discretisation errors close
to transition in order to find the extrapolation region in an automated way. A sample using the approximative
envelope method is shown in Fig. 3. The result is taken from an airfoil computation where transition takes
place above a LSB. Here, the investigation of the turbulent region behind as well as the influenced region
ahead of the transition location results in a strong, nonphysical increase of the N-Factor, which is overcome
by the linear extrapolation. Without the extrapolation, not only the transition location would be false, but
also oscillations could occur, as sometimes the local maximum ahead of the strong increase of the N-Factor
is detected at transition location. Much stronger oscillations can appear using the linear stability solver in
attached flows, as shown in Fig. 4. Here, with increasing time it can happen that no transition location is
found at all. As the transition location is then set to the trailing edge, one obtains a strongly amplified laminar
region and thus the transition location moves to the previous position. The linear extrapolation method can
therefore be used to avoid these unphysical oscillations. Note that the eN-method itself is an extrapolation
technique of linear stability results to the transition point upstream of which nonlinear effects dominate in
reality. Therefore, a local extrapolation of N-factors is an acceptable modification of the overall eN-method.
Finally, under-relaxation in the iterative update of the numerical transition location may be used in order to
damp oscillations in the iterative transition location update.
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Fig. 3: N-Factor distribution for separated flow
using the approximative envelope method
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Fig. 4: N-Factor distribution for attached flow
using the linear stability solver

4.3 Transition Prediction Procedure Using the Linear Stability Solver
4.3.1 Approach for Steady Flows

For the calculation of steady state flows the linear stability solver is used in usual ways. First, the frequency
range of amplified modes is estimated. Therefore all eigenvalues at an initial station are searched. Then, the
mode with the most amplified eigenvalue at this station is tracked up- and downstream until it is not amplified
anymore. At these two positions, the modes with the highest and lowest frequency that are still amplified are
determined. Second, a N-factor analysis is performed in the previously determined frequency range for a
number of fixed frequencies. For all these given frequencies F , the most amplified modes are tracked up-
and downstream until they are damped. Their temporal amplification rates are calculated in this region and
tranformed in spatial ones using the Gaster transformation. These are then integrated to N-factor distributions
in the amplified region for every frequency. The envelope over all these N-factor distributions then yields the
N-factor curve which is used to determine the transition location by comparsion with a critical N-factor.

4.3.2 Approach for Unsteady Flows

For a given frequency multiple modes with different wavenumbers and amplification rates may be found
by the numerical method. As the N-factor distribution for a given frequency is now computed with a time-
dependant scheme, it has to be made sure that at every timestep the same modes are analysed. This is not
guaranteed with the above approach for steady flows, which is why it is now used in a modified way. As the
mean flow changes with time, also the frequency range of amplified modes changes. Accordingly, the inves-
tigated range of frequencies has to be adapted during an unsteady calculation. For the present computations,
this is circumvented by selecting a fixed frequency range and checking afterwards if the frequencies that
were relevant for the transition were investigated at all times. The N-Factor analysis is then performed once
for every mode, using the modes wavelengths and amplification rates from the last timestep as initial values
for the solver to make sure that the same mode is investigated again. As new amplified modes can form
in unsteady flows, these are searched after every timestep along the airfoil for the investigated frequencies.
Also, modes that are damped to the point where the amplitude exponent is zero over the whole airfoil are
identified and deleted.
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5 NUMERICAL FLOW COMPUTATIONS

Steady state flow solutions are often not obtained for flows with LBS´s, even with Reynolds averaging of the
flow equations. As a consequence, the RANS solver is run in its time-accurate mode using the dual time-
stepping approach, even for steady onset conditions. As a rule of thumb we use a time step length of ∆t ≈
0.01, where the time is made non-dimensional by using the onset flow velocity and the chord length. Figure
5 indicates that this time is sufficiently small to resolve the main viscous boundary layer interactions. For
unsteady onset conditions there remains a very small influence on the temporal distribution of the transition
location, as seen in Fig. 6. As the influence on the distribution of the force coefficients is negligible, no
shorter timestep than ∆t ≈ 0.01 was chosen to minimise the computational time.
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5.1 Steady Onset Conditions
5.1.1 Flow Computations of XIS40MOD Airfoil

Numerical computations of the research airfoil XIS40MOD are chosen because there exists detailed experi-
mental data of Würz [6] from a low-disturbance wind tunnel. The measured data include pressure distribu-
tions and boundary-layer flow velocities measured with a hot wire (mean flow and flow disturbances). The
airfoil is specifically designed to produce a large laminar separation bubble on its upper surface (see Fig. 7).
The computational mesh shown has 528 cells in surface-tangential direction whereas normal to the surface
96 cells are used. This is the standard mesh. The mesh points are clustered around the leading edge and
around the expected LBS. About 40 out of 96 wall-normal cells are located in the laminar boundary layer
(not shown here). More refined meshes have been generated in order to obtain grid convergence. The fine
mesh has 1056x192 cells and a super-fine mesh with 2112x384 cells was also used. The flow conditions are
chosen as Re = 1.2 ·106 and α =−3◦, according to the experiment. The first round of computations is perfor-
med using a fixed transition location at x/l = 0.76 on the upper airfoil surface in order to address the effect of
spatial 0 errors on the numerical solutions. The results are displayed in Fig. 8 and Fig. 9. The computations
are performed with the SST turbulence model. The pressure distribution and skin friction are well resolved
in the region of attached flow using the 528x96 mesh. However, it takes a grid of around 1056x192 points
in order to capture the laminar separation accurately. The grid-converged computation exhibits a pressure
rise in the rear part of the bubble that is not as steep as in the experimental data. Also, the wall shear stress
downstream of reattachment is significantly smaller in the computation compared with the measurement.

The next computations are used to investigate the effect of varying the turbulence model. These com-
putations are performed on the 528x96 grid. The results of the algebraic model of Baldwin and Lomax are
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Fig. 7: Standard computational grid for XIS40MOD airfoil and computed distribution of pressure coefficient at
Re = 1.2 ·106,α = −3◦

compared with the one-equation model of Spalart and Allmaras, two variants of the k−ω model and the SSG
Reynolds-stress model in Fig. 10 and 11. Note that different numerical transitions locations were used as the
individual models predict a rather different rise of turbulence and turbulent eddy viscosity downstream of
the nominal transition location. For example, it appears that the growth of turbulent kinetic energy predicted
by the original k−ω model is rather slow, compared to the others. Therefore, in order to compute similar
positions of the turbulent reattachment for this model one has to specify the nominal transition position si-
gnificantly upstream. The results indicate that the differential-equation turbulence models predict a too slow
growth of turbulence in the separation bubble. Accordingly, the rise of wall shear stress in the re-attachment
region is much too slow either. This problem is more striking for the original k −ω model whereas the
Spalart-Allmaras, the SST and the SSG models perform somewhat better. Note that the SST model uses the
k−ε formulation far away from walls and this seems to be the reason for the more rapid growth of turbulence
compared to the k−ω model. This holds true for the SSG model as well. The algebraic Baldwin-Lomax mo-
del, on the other hand, yields an instantaneous switch to fully turbulent flow right at the nominal transition
point. It turns out that this results in rather close agreement of the predicted pressure distribution. However,
all models share the unsatisfactory result that the wall shear stress is significantly underpredicted downstream
of re-attachment. Here, the high complexity of the Reynolds-stress model seems have a positive effect, as
it predicts the highest level of turbulent shear stress of all models. However, the results of the currently im-
plemented Reynolds-stress model can only be understood as step in the right direction. Please note that the
experimental hot-wire set up could not measure reverse flow. Therefore, the positive, experimental values of
c f within the separated flow region are false.

The flow structures of the laminar separation bubble predicted by the algebraic model and the SST model
are displayed in Fig. 12. The vertical co-ordinate is enlarged by a factor of 3 in order to make the differences
visible. The SST model predicts a shallow shape of the separation bubble whereas the bubble of the algebraic
model closes much more rapidly. A fast turning vortex is created in the aft part of the LSB by the sudden
onset of turbulent viscosity with the Baldwin-Lomax model. This vortex corresponds to a local peak in the
boundary-layer edge velocity at x/c = 0.8, which is visible in both, computation and experiment.

Next, the effect of grid density on the predicted N-factor is investigated. Figure 13 displays the N-factor
distribution that results either from using the approximate envelope method or from solving the local linear
stability equations with the Coast3 code. Coast3 is used in two ways: In one way only the pressure distri-
bution from FLOWer is used, and the affiliated boundary layer method “Coco” generates the velocity and
temperature profiles up to the point of separation. In the other way, the profiles are used directly from the
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Navier-Stokes method over the whole airfoil. As the accuracy of the laminar mean flow improves on finer
meshes one observes a small rise of N-values with an increasing number of points in the boundary layer. For
about 70 points in the boundary layer good agreement with the measurement as well as the N-factor distribu-
tion based on the pressure distribution is found. The approximative envelope method also shows quite good
agreement in the region of attached flow. The increasing disagreement above the LSB is due to the fact that
the method assumes Hartree-profiles (see 2.1.3), which is invalid in the region of the LSB.

Finally, the iterative convergence of transition location with time is displayed in Fig. 14. The computation
was started from an initial transition location close to the trailing edge. This provokes laminar flow separation
in the initial phases of the computation. The separation then grows until the N-factor becomes larger than
the critical value. Then, transition jumps upstream and re-attachment is obtained by turbulent momentum
transport. Finally, the transition location converges continuously to the steady-state result. This takes about
300 physical time steps of ∆t = 0.01, according to Fig. 14. In conclusion we notice that the computations
of the XIS40MOD airfoil display a strong sensitivity of the computed LSB to spatial discretisation errors.
However, extraction of sufficiently accurate boundary layer data for transition prediction is feasible. The
major problem in physical modelling of this case seems to be the turbulence model. Two-equation models
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do not predict the strong rise of shear stress that would bring the pressure distribution and wall shear stress
close to the experimental observations. The good agreement of the algebraic model in terms of pressure
distribution seems fortuitous as this model simply neglects any history effects of turbulence associated with
convection and diffusion.
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Fig. 14: Iterative convergence of transition location with SST-model

5.1.2 Flow Computations of SD7003 Airfoil

The SD7003 airfoil is designed for model airplanes that operate in the Reynolds number range of 0.5 ·105 −
2 · 105. The pressure distribution exhibits a carefully controlled adverse pressure gradient ahead of laminar
separation. This strategy yields growing disturbances ahead of the separation. Furthermore, the adverse pres-
sure gradient in the rear of the airfoil is rather limited, due to the small airfoil thickness of around 8 percent
and its forward location of the point of maximum thickness. The resulting separation bubble is therefore thin
over the full angle of attack range, even for Reynolds numbers below 105. Hence, the airfoil is not suspect
to the break up of the laminar separation bubble within its design range and it is a good test case to assess
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computational capabilities.
Recently, 2D phase locked PIV measurements were conducted on the upper side of the SD7003 in a

low turbulence (Tu = 0.0012) windtunnel (LNB) at Braunschweig Technical University. The wing section
with chord length 200mm and span 400mm was made out of glass fibre reinforced plastics and fitted in the
400mm×600mm×1200mm test section of the windtunnel. The measurements were carried out at an angle
of attack of α = 4◦ and a Reynolds number of Re = 60000 with the commercial PIV system Flow Master 3S
and a frequency doubled Quantel Twin double puls Nd:YAG-laser. To achieve highly detailed measurements
along the upper side, the observation domain was translated to 9 different positions, each with a field of view
of 27.27mm x 21.81mm. At each of the 9 locations 1000 statistically independent PIV images were recorded
in order to calculate the mean velocity and three components of the Reynolds stress tensor. For the evaluation
of all images the commercial PIV software DaVis 6.2 was used. Because of a high seeding density it was
possible to choose small interrogation windows with a size of 16px×16px. Together with an overlap of 50
percent a spatial resolution of 0.17mm could be achieved. The absolute particle image displacement range
was determined to be between 0.004px and 14.36px which is in an appropriate range for small measurement
errors.

The computational standard mesh for the numerical investigation of the SD7003 airfoil contains 528x96
cells, as for the previous case. Grid convergence studies using a coarse 264x48 mesh in addition indicate that
this case is, because of the now lower Reynolds number, less sensitive to grid density as the XIS40MOD
airfoil. This is displayed for the flow at a moderate angle of attack by using the SST turbulence model in
Fig. 15. The distribution of wall-shear-stress coefficient indicates that a mesh with 528x96 cells is sufficient
for LSB computations at low Reynolds numbers. The non-dimensional time step was chosen as ∆t = 0.01
and around 1000 time steps were needed for convergence. Note that the number of inner iterations in the
dual time stepping method was around 20. Typical pressure distributions for a variety of angles of attack are
displayed in Fig. 16. The LSBs are seen as local plateaus. The lower surface is fully laminar for all angles
larger than zero. The LSB moves from the trailing edge to the leading edge as the angle of attack is increased.
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Fig. 16: Computed pressure distributions with the
Baldwin-Lomax model

Figure 17 compares the turbulent shear stress from the PIV measurement at α = 4◦ with the computa-
tions for different turbulent models, using the coupled linear stability solver coast3. The transition location
in the measurement is found extrapolating the wedge that is formed by the turbulent shear stress into the
upstream direction. The so found transition location lies at about the thickest point of the LSB, as the ef-
fect of the turbulence is the closure of the bubble, and can be given to about xtran,meas. = 0.56. From that
point on the turbulent shear stress continuously grows up to a maximum dimensionless value of -0.026,
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Fig. 17: Measured and computed turbulent shear stress at α = 4◦

which is reached about 9.5 percent of the chord length c downstream. Using a critical N-factor of Ncrit = 8
which fits the turbulence level of the windtunnel according to Mack´s relation from chapter 2.1.2 and the
algebraic Baldwin-Lomax (BL) turbulence model, the transition location is computed at xtran,BL = 0.53. As
the Baldwin-Lomax model produces large amounts of turbulence instantaneously at the transition point, the
bubble is closed at about the same point as in the measurement, even though only a nondimensional shear
stress of about half the measured value is reached. The fact that the transition location was calculated a few
percent upstream of the measured indicates that the N-Factor was chosen slightly to small, but this results in
a good overall simulation with the BL-model. With the SST-model, a transition location of xtran,SST = 0.42
is found, while the first maximum of the nondimensional shear stress (for the shown instantaneous flow
state) is reached 10.5 percent of c downstream of that. Although the unsteady flow behavior given by the
SST-model appears much closer to the experimental findings compared to the BL-model, the produced tur-
bulent shear stress is (at the first maximum) again only half of the measured value. As this is not sufficient
to close the bubble, it becomes larger compared to the BL-model and sheds vortices at its end. Because the
thicker upstream region of the bubble yields larger amplifications of disturbances, the transition location is
computed 11 percent upstream compared to the BL-model. The SSG-model experiences the same problems
as the SST-model, but even more pronounced. Note that this model shows the best overall performance at
higher Reynolds numbers [19] and was still the superior transport equation turbulence model at the previous
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case at an already low Reynolds number of Re = 1.2E6. It can be concluded that the algebraic BL-model
is best suited for the simulation of this case, despite its unphysical behaviour. Large improvements could be
expected from a model based on transport equations which would be able to predict the strong rise of the
turbulent shear stress behind the LSB.

5.2 Unsteady Onset Conditions
5.2.1 Flow Computations of SD7003 Airfoil

To validate the later described numerical results measurements were conducted in the watertunnel at Braun-
schweig Technical University. The facility has a free stream turbulence level of Tu = 0.01, which translates
into a critical N-factor of Ncrit = 2 using eq. 13. The SD7003 wing section with 200mm chord length and
a span of 248mm was mounted on a plunging mechanism, as described in [23]. The mean angle of attack
was set to α0 = 5.5◦. A Reynolds number of Re = 60000 resulted from the onset velocity at infinity of
U∞ = 0.3m/s and a water temperature of 20◦. As a flapping frequency of f = 0.25Hz and a plunging ampli-
tude of z1 = 10mm were used, the resulting quasisteady equivalent angle of attack amplitude from plunging
can be calculated to ζ1 = 2π f z1

U∞
= 3◦. The resulting effective angle of attack for the airfoil motion then reads

αeff = α0 +ζ1sin(2π f t) = 5.5◦+3◦sin(2π f t). The airfoil was driven by an eccentric mechanism with 1 per-
cent derivation to the ideal sinusoidal stroke. Almost the same 2D PIV set up was used as for the windtunnel
measurements described above. The field of view was only slightly bigger (31.24mm×24.99mm), which led
to a spatial resolution of 0.2mm. To cover most of the separation bubble, two slightly overlapping locations
of 30mm distance were chosen. Phase locked measurements were performed for the four motion positions
top dead centre (TDC) (αeff = 5.5◦), downstroke (αeff = 8.5◦), bottom dead centre (BDC) (αeff = 5.5◦) and
upstroke (αeff = 2.5◦). Additional measurements were carried out for these four angles of attack for steady
onset conditions.

The following numerical results were obtained using the eN-method with the extension for unsteady flows
as described in chapter 2.1. A first verification of the method was achieved by a calculation of a case with
steady onset condition, first with the steady N-Factor integration schema and second, as a restart, with the
unsteady one. There, the obtained N-Factor distribution converged to a steady state solution that agreed
within plotting accuracy.

As the BL turbulence-model showed the best performance for the steady onset condition calculations in
the previous case, it was chosen for the first unsteady calculation, which is presented in the following. To take
into account the wall effect from the above watertunnel experiment, a simple wall correction for steady flows
from [24] was applied. This results into an effective angle of attack of αeff = 6◦ +3.3◦sin(2π f t) which was
used for the calculations. As the calculation has to be done for nondimensional values, a reduced frequency
of k = π f c/U∞ = 0.52 and a plunge amplitude of z1/c = 0.0554 were used. The used computational mesh
is similar to the previous case and has a density of 472x96 points.

Figure 18 shows the obtained temporal distribution of transition location and lift coefficient, using a
coarser mesh of only 236x48 points for the first three motion periods. The nondimensional timestep was
chosen ten times too large with ∆t = 0.085 during the first five motion periods, which led to some small
oscillations in the transition location during the fourth and fifth motion period. The sixth and seventh motion
periods were then calculated using 2000 timesteps with ∆t = 0.0085 each. As no significant differences are
found between the end of the sixth and seventh period, a periodic solution is found for the seventh motion
period.

Figure 20 shows the turbulent shear stress u′v′ obtained by a phase locked measurement during the down-
stroke of the airfoil. Even after averaging over 1000 frames there are regions found with elevated shear stress,
which represent vortices shed at the end of the LSB. This indicates that the periodic shedding of vortices be-
hind the LSB is coupled to the plunge motion, which has a much lower frequency. The transition locations
for these phase locked measurements have been determined similar to the measurement at steady onset con-
ditions in the windtunnel described earlier. Here, as a LSB with shed vortices has been measured, the first
local maximum of the bubble corresponds to the transition location according to the onset of the turbulent
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Fig. 20: Measured turbulent shear stress during downstroke

The transition locations found in the computations, in the phase locked measurements and in the steady
state flow measurements with the quasisteady equivalent angles of attack are shown in Fig. 19. The com-
parison between the measurements and computations for steady onset conditions show a large discrepancy
between the transition locations. It can be concluded that either the water tunnels turbulence level is less than
measured, or the correlation of Mack is not working properly for the quite high turbulence level of Tu = 0.01
of the watertunnel. For the unsteady computation, the too low chosen N-factor of N = 2 again results in a
transition location upstream of the measurement, but now with a smaller and about constant distance. It is
interesting to see here that the unsteady transition locations (calculation and measurement) are downstream
of the steady ones at ζ = 8.5◦, while it is the other way around at the lower angles. This behaviour still needs
to be explained. The computed unsteady transition location shows a phase shift of 25◦ during the downstroke
and 40◦ during upstroke, which is about the expected effect at the examined reduced frequency of k = 0.52.
The lift coefficient however seems to be more dependant on the mean flow and does not show much phase
shift, as seen in Fig. 18.

The measured and computed LSBs are finally compared at the dead centres, downstroke and upstroke
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in Fig. 21, together with the nondimensional total velocity ~U =
√

U2 +V 2. In order to be able to draw
streamlines, the v-component of the velocity was corrected with the plunging velocity of the airfoil, leading
to a velocity of zero on the surface of the airfoil. It can be seen that despite the same quasisteady angle of
attack of ζ = 5.5◦, there are completely different flow states found at TDC and BDC. While the LSB that
formed during the downstroke is clearly visible at BDC, it is vanishing during upstroke and can hardly be seen
at all at TDC. A transition location can not be determined in the measurement for TDC. During downstroke,
the calculated LSB is clearly higher than the measured one. Correspondingly, the point of laminar separation
xsep/c = 0.05 is situated a little ahead of the measured one at xsep/c = 0.065. At BDC a vortex is shed from
the LSB in the simulation, which leads to about the same thickness of the LSB in the front part as in the
measurement. The point of laminar separation is again somewhat ahead in the calculation.
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Fig. 21: Comparison of streamlines and velocities between measurement and calculation at four different times

6 SUMMARY

Transitional flows around airfoils were calculated for steady as well as unsteady onset conditions using a
Reynolds-averaged Navier-Stokes method. Hereby, the transition location was found using the eN-method
in combination with a linear stability solver. In order to do so, a new temporal integration schema for the
eN-method was used. It was pointed out that the N-Factor distribution needs special treatment in the vicinity
of the transition location, i.e. extrapolation.

For the flows with steady onset conditions it was shown that high grid densities are necessary to obtain
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grid convergence. It was shown that the main remaining sensitivity for the flows with LSB is the turbulence
model, and that further improvement in that field is needed.

A first solution was presented for the transitional flow around a moving airfoil using the new temporal
schema. It was found for the investigated case that very different flows form at the quasisteady identical
angles of attack at the dead centres, thus the flow has an unsteady character. The computed unsteady transition
locations were promising compared to the measurement.
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